
Studiengang: Gebäudesystemtechnik Bachelor of Engineering

GRUNDLAGEN DER ENERGIENETZE

Teil 2

Thermische Energieversorgungsanlagen

VORSTELLUNG

Wolfgang Krause 64385 Reichelsheim Rangenweg 8

E-mail: w.krause@iget-ingbuero.de

Telefon: o 176 216 635 19

Dipl.- Ing. Energie- und Versorgungstechnik (VDI) Lehrbeauftragter der H-DA für Thermische Energienetze

MEIN WERDEGANG

• Geboren: 04. November 1955

Geburtsort: Gelsenkirchen

• 1966 – 1973 : Schule Abschluss: *Fachoberschulreife*

• 1973 – 1976: Berufsausbildung zum Techn. Zeichner Heizung-Lüftung- Sanitär

im Ing. Büro für Technische Gebäudeausrüstung

• 1976 – 1977: *Fachoberschule* für Technik

• 1977 – 1982: *Studium der Versorgungstechnik* FH Münster und Köln

Schwerpunkt: Energie-, Kommunal- und Umwelttechnik

MEIN BERUFLICHER WERDEGANG (1)

- 1982 1984 Trainee bei Fa. EVT-Energie- und Verfahrenstechnik, Köln
 Auslegung, Berechnung, Konstruktion und Inbetriebnahme von Industrie-Dampferzeugern
- 1982 2010 ca. 10 Jahre **Projektleiter, Abteilungsleiter, Prokurist** bei der Eproplan GmbH, Stuttgart Beratende Ingenieure für **Energie- und Prozesstechnik**
 - Technische Gebäudeausrüstung Industrie
 - Industriekraftwerke; Rauchgasreinigung, Umwelttechnik,
 - Energiekonzepte

MEIN BERUFLICHER WERDEGANG (2)

- · Ca. 10 Jahre Abteilungsleiter, Bereichsleiter
 - a) Röhm GmbH, Chemische Fabrik, Darmstadt und
 - b) Heraeus Holding GmbH, Hanau
- Betrieb und Instandhaltung der Energie-, und Ver- und Entsorgungsanlagen
- Leitung der Ingenieurtechnik
 - Planung der Technischen Gebäudeausrüstung in Gebäude der Energieversorgung, Verwaltung und Produktionsanlagen

MEIN BERUFLICHER WERDEGANG (3)

- Seit 2010: freiberuflich, selbständig
 - IGET Ingenieurbüro für Gebäude- und Energietechnik
 - <u>www.IGET-Ingbuero.de</u>, 64385 Reichelsheim
 - Planung Heizung, Fernwärme, Lüftung, Sanitär, Brandschutztechnik
 - Elektrotechnik, Gebäudeautomation, Bautechnik, etc. mit freien Mitarbeitern/Partnerbüros
 - U.a. für
 Logistikzentrum Gernsheim, Flughafen Frankfurt, KKW-Benznau (Schweiz),
 Pharma Novartis (Schweiz), VAC Hanau, Stadt Schwalbach a. T, Neu-Isenburg-Center, u.v.a.m

NEUER TÄTIGKEITSBEREICH

• Seit August 2015: Lehrbeauftragter der H-DA

• Und hier bin ich nun: In meinem 1. Semester

WAS WOLLEN WIR TUN?

 Sie wollen den Bachelor-Studiengang
 Gebäudesystemtechnik: Energieeffiziente Wohn- und Gebäudetechnologie absolvieren

Ich möchte Ihnen im Modul B13 – Grundlagen der Energienetze die Thermischen Energieversorgungsanlagen inklusive Fernwärme näher bringen

WARUM?

- Sie:
- Weil es ein Pflichtfach ist? Weil der Lehrplan es so vorgibt?
- Weil Sie schon immer mehr über Energieanlagen wissen wollten?
- Wären Sie auch hier, wenn Sie nicht "müssten"?
- Ich:
- Weil es mir Freude macht
- Weil mich Prof. Wagner gefragt hat
- · Weil ich Ihnen helfen möchte auch diesen "Schein" zu bekommen

WAS?

- Worum geht es in Ihrem Studium? Welches ist das (Ihr) Ziel?
- Warum dann "Thermischen Energieversorgungsanlagen inklusive Fernwärme"
- Was können und (s)wollen wir in den verbleibenden Vorlesungen machen und erreichen?

WORUM GEHT ES IN IHREM STUDIUM?

Gemäß Studieninformation Gebäude-Systemtechnik

- Spielen Steigende **Energiepreise** eine wichtige Rolle. Sowohl für **Privathaushalte** als auch **Unternehmen**
- Gilt es, individuelle Lösungen zur Kostensenkung zu finden. Stichwort Energieeinsparungen.
- Haben dabei

 - intelligente KonzepteSanieren von Gebäuden eine wesentliche Bedeutung
- Sind Ingenieurinnen und Ingenieure für energieeffiziente Wohn- und Gebäudetechnologie gefragt
- · Also: Sie
- · Es geht um Sie. Ihr Studium, Ihre Berufung

WELCHES IST DAS (IHR) ZIEL?

Im Studiengang Gebäudesystemtechnik erlernen die Studierenden:

- · Gebäude ganzheitlich in Bezug auf Energie- und Informationsflüsse
 - zu planen,
 - zu analysieren,
 - zu optimieren und
 - ökologisch zu bewerten.

Studieninhalte (unter anderem):

- Intelligente technische Gebäudeausrüstung
- Gebäudeautomation / Gebäudekommunikation
- • Human Machine Interfaces (HMIs) für Smart Home
- Wechselwirkung zwischen Architektur und Technik
- • Energieeffiziente Klima- und Heizungstechnik
- Projektmanagement

WAS KÖNNEN SIE NACH DEM STUDIUM (MIT DEM STUDIUM) TUN

- Planung- und Beratung
- Energiewirtschaft und Energieberatung
- Technische Gebäudeausrüstung
- Technisches Gebäudemanagement
- Heiz- und Klimatechnik
- Haus- und Versorgungstechnik

Masterstudiengang

WELCHES IST IHR ZIEL?

- Warum haben Sie sich für **DIESES** Studium entschieden?
- Was ist **IHR VORRANGIGES** Berufsziel?

WARUM DANN "THERMISCHE ENERGIEVERSORGUNGSANLAGEN INKLUSIVE FERNWÄRME"??

- Weil:
- Die Energiepreise wesentlich von der Erzeugung, den vorgeschalteten Systemen abhängen.
- Ich die –technischen und wirtschaftlichen- Abhängigkeiten der Systeme kennen und verstehen sollte.
- · Wir über unseren "Tellerrand" hinaus schauen sollten.

Warum noch ??

STEFAN REUTHER, ARCHITEKT

"Zeitgemäße Planungsprozesse im Bauwesen verfolgen

- · einen integralen und interdisziplinären Denkansatz.
- Der Studiengang Gebäudesystemtechnik verbindet die
- · Disziplinen Architektur, Bauingenieurwesen und
- · Elektrotechnik in idealer Weise für zukünftige Herausforderungen."
- Stefan Reuther, Architekt, planungsgruppeDREI PartG

ANNETTE ZIMMER-KASS

- · Die Ingenieurwissenschaften sind sehr vielseitig, sodass
- · es <u>für jeden Typ die passende Branche g</u>ibt. Und die große
- · Praxisorientierung der h_da ist die ideale Basis für den
- Bedarf in der Industrie."
- Annette Zimmer-Kass, Absolventin Elektrotechnik,
- Schwerpunkt Energietechnik

UND IHRE BEGRÜNDUNG?

WAS KÖNNEN UND (S)WOLLEN WIR IN DEN VERBLEIBENDEN VORLESUNGEN MACHEN UND ERREICHEN?

Was **sollen** wir erreichen?

- Absolventen dieses Moduls sollen
- den **grundsätzlichen Aufbau** von elektrischen und **nichtelektrischen** Energienetzen von Gebäuden kennenlernen
- · kleinere Anlagen projektieren können.
- Im Rahmen von Laborübungen sollen sie mittels CAD-Programmen auch Pläne für einfache dreidimensionale Rohrleitungssysteme erstellen können.
- Die Teilnehmer sollen in die Lage versetzt werden, die wirtschaftlichen Aspekte zu beurteilen und
- · Systeme gegen einander abwägen zu können sowie
- · Antrags- und Genehmigungsverfahren vorbereiten zu können.

WAS KÖNNEN UND (S)WOLLEN WIR IN DEN VERBLEIBENDEN VORLESUNGEN MACHEN UND ERREICHEN?

Was **sollen** wir lernen und kennen?

- Thermische Energieversorgungsanlagen inklusive Fernwärme
- Tiefbauarbeiten
- Korrosionsschutz
- Planung und Bau von Hausanschlussleitungen Gas und Wasser
- Betrieb und Instandhaltung von Wasserverteilungsanlagen
- Bau und Betrieb von Nah- und Fernwärmeleitungen

- Gasnetze
- Anlagenkonfiguration
- Gas-Druckregel- und Messanlagen
- Planung und Bau von Hausanschlussleitungen Gas und Wasser
- Betrieb und Instandhaltung von Gasverteilungsanlagen bis 5 bar Betriebsdruck

WAS KÖNNEN UND WOLLEN WIR IN DEN VERBLEIBENDEN VORLESUNGEN MACHEN UND ERREICHEN?

- Was wollen wir können und kennen?
- ALLES

- Was können wir können und lernen?
- Übersicht der Erzeugung und Verteilung
- Auslegung und Projektierung von Modulen und wesentlichen Komponenten
- Wirtschaftliche Bewertung verschiedener System

WIE?

- Gemäß Modulhandbuch:
 - Seminaristische Vorlesungen mit Übungen
 - Bearbeitung eines kleineren Projektes (Hausarbeit)
 - Selbststudium
 - Labor

WIE?

- Nach meinen Vorstellungen:
 - 1. Information (Ich)
 Technik, Normen, Vorschriften, Berechnungen, Literatur
 - 2. Fragen, Vertiefungen, Übungen (WIR)
 - 3. Selbststudium, Projektarbeit (SIE)

WIE?

- Nach Ihrer Vorstellung ?
- · Was erwarten, wünschen Sie sich (anders, ergänzend)?

WAS BRINGEN SIE MIT?

- Die allgemeine, fachgebundene Hochschulreife, Fachhochschulreife
- Ausbildung, Beruf? Wer? Welche(n)?
- 2 Semester Studium
- Mathematik I,II
- Grundlagen der BWL und Kostenrechnung
- Physik /Thermodynamik
- Soziale Kompetenz

WAS BRINGEN SIE MIT? (2)

- Grundlagen der (elektrischen) Energienetze
- HOAI mit Leistungsphasen
- Kostengruppen gem. DIN 276-1:2006
- Architektur lesen lernen
- grundsätzliches zu:
- Gebäuden, Planungsumfang, Ingenieurbüros
- Normen / Richtlinien

WAS BRINGE ICH MIT

- Berufserfahrung
- Kenntnis und Erfahrung über Anforderungen im (meinem) Beruf

DIE SCHWERPUNKTE

- Thermische Energieversorgungsanlagen
- Aufbau und Funktion
- Auslegung und Berechnung der Hauptkomponenten
- Planung und Konzeption
- Wirtschaftliche Bewertung
- Bau und Betrieb
- Betrieb- und Instandhaltung
- Sicherheit, Gesundheits- und Umweltschutz
- Rechtliche Bestimmungen und Antragsverfahren

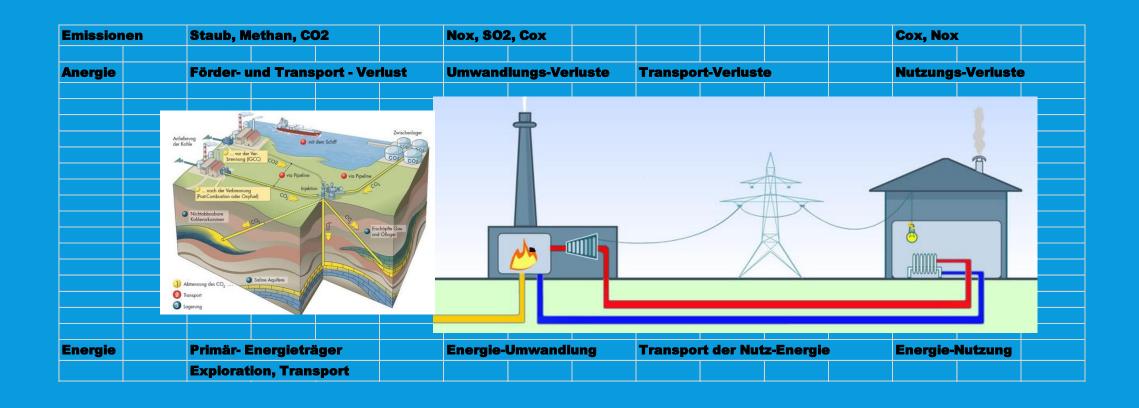
DIE NEBENTHEMEN

- Tiefbauarbeiten
- Korrosionsschutz

- Hinweis auf
- Grundlagen der Messtechnik, Fernwirktechnik, Vermessung und Planwerke
- = Themen der anderen Module

VORLESUNG UND SELBSTSTUDIUM

- Vorlesung
- Information Übersicht, Hinweise, Anleitungen
- Selbststudium
- Vertiefung des gehörten durch Literaturstudium


ÜBUNGEN, HAUSARBEIT, KLAUSUR

- Bearbeitung von Teilen eines Projektes
- Anwendung der Lerninhalte

DAS ZIEL

- Absolventen dieses Moduls sollen
- den grundsätzlichen Aufbau von Thermischen Energienetzen kennen
- (Teil-) Anlagen projektieren können
- wirtschaftlichen Aspekte beurteilen und Systeme gegen einander abwägen können
- Antrags- und Genehmigungsverfahren vorbereiten können.

AUFBAU DER THERMISCHEN ENERGIEVERSORGUNGSANLAGEN

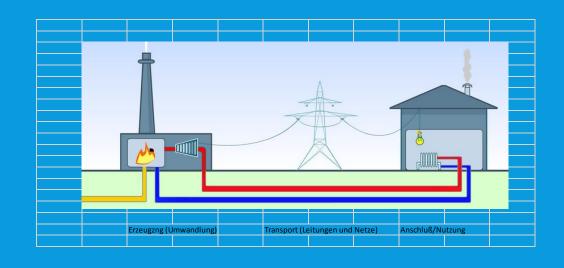
TEILE DER THERMISCHEN ENERGIEVERSORGUNGSANLAGEN

- Wir beschäftigen uns mit einem Teil der Energieversorgung (sanlagen)
- "Primär"-Energie-Transport (hier: Erdgas, ggf. Biomasse)
- Energie-Umwandlung (hier: "Erzeugung" genannt)
 -> Zur Klarstellung: Was wir als "Energie-Erzeuger" (EVU, Kraftwerke, Heizwerke, Heizkessel, Solaranlagen, Biomasse-Anlagen und deren Betreiber, bezeichnen, sind Anlagen oder Gesellschaften die Energie umwandeln und daraus unsere "Nutz-Energie" (Brennstoff, Wärme, Strom) herstellen ("erzeugen").
- ("Nutz"-) Energie Transport und –Verteilung (Rohrleitungen, Pumpen, Armaturen mit dem Wärmeträger (Luft), Wasser, Dampf
 - -> (Strom war im ersten Teil das Thema)

DIE ENERGIE-UMWANDLUNG

- Energieumwandlung:
- Eine Energieform wird in eine andere umgewandelt (siehe Vorlesung Thermo-Dynamik)
- Energie geht nicht verloren! Es gibt keine Energie-Verluste
- Wir bezeichnen Verlust als "für die gewünschte Anwendung nicht nutzbare Energie =(Anergie) - (siehe Vorlesung Thermo-Dynamik)
- Wir unterscheiden im Wesentlichen mechanische-, elektrische-, innere -und Strahlungsenergie und unterscheiden in den nutzbaren (Exergie/Nutz-Energie) und nicht nutzbaren (Anergie/Verlust-Energie) Teil der Energie.
- Jede Energieversorgung beruht auf einer Energieumwandlungskette mit einem nutzbaren und nicht-nutzbaren Anteil.

DIE ENERGIE(KOSTEN)-BEWERTUNG

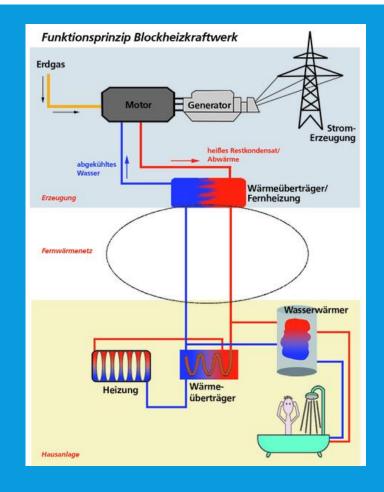

- Wir bewerten nicht:
- Die Entstehungskosten (Erdgas, Kohle, Erdöl, Sonne, Wind,...) wurden/ werden uns "kostenfrei" (von Gott, dem Universum, Allah, der "Natur",....) zur Verfügung gestellt.
- Wir bewerten die
 - **Ge**stehungskosten (Exploration, Förderung, Transport, Umwandlung)
- (zum Teil) die **Emissionen** (CO2-Steuer/-Abgabe; Emissionshandel, Aufwand zur Emissionsminderung(z.B. NOx, SO2),...)
- - Nutzung (Komfort, Anwendung, Nutzen)
- Daraus generiert sich der Wert (Preis) der "Energie"

SCHWERPUNKTE DER VORLESUNG ZU THERMISCHEN ENERGIEVERSORGUNGSANLAGEN

- Planung und Bau
- Planung, Vergabe und Abrechnung
- Bau und Betrieb
- Betrieb und Instandhaltung

Von Netzen und Leitungen der

- Nah- und Fernwärme-, Gas- und
- Wasserverteilung von der Erzeugung bis zum Hausanschluss



Wirtschaftlichkeit, Vergleich der verschiedenen Systeme Rechtliche Bestimmungen und Antragsverfahren

WAS SIND THERMISCHEN ENERGIEVERSORGUNGSANLAGEN?

- Wir verschaffen uns einen Überblick
- Welche Art von Anlagen gibt es?
- Wodurch unterscheiden sie sich?
- Was haben alle Anlagen gemeinsam?

BHKW		Solar	
	KWK		
		Biomasse	
Erdgas			
	Kohle		

PRIMÄR- ENERGIETRÄGER

Kernenergie: URAN, Plutonium

 Klammern wir hier aus: Untergeordnete Bedeutung für die THERMISCHE Energieversorgung

Erdgas, Kohle, Erdöl

- = fossile Energieträger
- Entstanden aus abgestorbenen Lebewesen – deshalb Fossil
- Heute (noch) die Haupt-Energieträger der Wärmeversorgung
- Sonne, (Wind), Erdwärme, Biomasse * Wind ohne nennenswert Bedeutung für die Wärme(erzeugung)
- = (so genannte) **erneuerbaren Energiequellen**
- Die Haupt-Energieträger der Zukunft?

VERBLEICH DER (HAUPT-) ENERGIETRÄGER - ENTSTEHUNG UND NUTZUNGSANTEIL

fossile Energieträger (Erdgas, Kohle, Erdöl)

٠

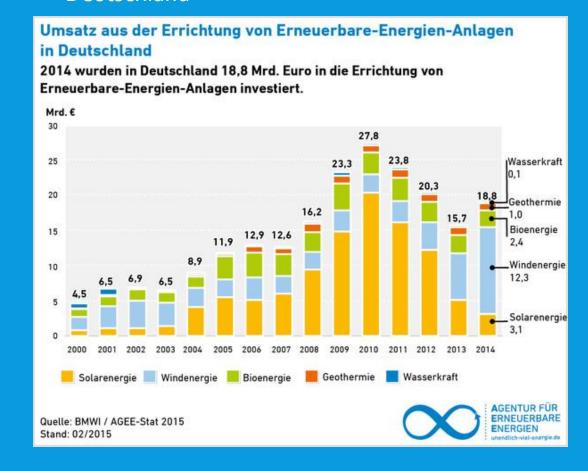
 regenerative Energieträger (Sonne, (Wind), Erdwärme, Biomasse)

- Entstehung:
- Kohle: vor rund 300 Millionen Jahren Erdöl und Erdgas. vor 200 Millionen Jahren
- Anteil an der Gesamt-Nutzung
- Weltweit: ca. 80 %; Europa: ca. 85 %
- Vorräte/Ressourcen: 40 bis 200 Jahre (je nach Bedarfsund Explorationsentwicklung)
- Sonne: vor Entstehung der Erde = Quelle aller anderen Energieträger
- Erdwärme (??) keine Definition gefunden
- Biomasse: Jährliche Erneuerung, stetiges Nachwachsen (wenn die Nutzung die Regeneration nicht übersteigt)
- Anteil Weltweit: ca. 20 %, Europa: ca . 15 %
- Anteil stetig steigend = Zukunft

ERNEUERBARER ANTEIL AM BRUTTO-END-ENERGIEVERBRAUCH IN DER EU

	2004	2013
1 <u>Schweden</u>	38,7	52,1
2 <u>Lettland</u>	32,8	37,1
3 <u>Finnland</u>	29,2	36,8
4 <u>Österreich</u>	22,7	32,6
<u> 5 Dänemark</u>	14,5	27,2
6 <u>Portugal</u>	19,2	25,7
7 <u>Estland</u>	18,4	25,6
8 <u>Rumänien</u>	16,8	23,9
9 <u>Litauen</u>	17,2	23
10 <u>Slowenien</u>	16,1	21,5
11 <u>Bulgarien</u>	9,6	19
12 <u>Kroatien</u>	13,2	18
13 <u>Italien</u>	5,7	16,7
14 <u>Spanien</u>	8,3	15,4
15 <u>Griechenland</u>	7,2	15,1
16 <u>EU-28</u>	8,3	15
17 <u>Frankreich</u>	9,3	14,2
18 Deutschland	5,8	12,4
19 <u>Tschechien</u>	5,9	12,4
20 <u>Polen</u>	7	11,3
21 <u>Slowakei</u>	5,3	9,8
22 <u>Ungarn</u>	4,4	9,8
23 <u>Zypern</u>	3,1	8,1
24 <u>Belgien</u>	1,9	7,9
25 <u>Irland</u>	2,4	7,8
26 <u>Vereinigtes Königreich</u>	1,2	5,1
27 <u>Niederlande</u>	1,9	4,5
28 <u>Malta</u>	0,3	3,8
29 <u>Luxemburg</u>	0,9	3,6

• Steigerung: 13, 4 %


• Steigerung: 6,6 bzw. 6,7 %

 Hier ist Deutschland kein Europameister

VERBLEICH DER (HAUPT-) ENERGIETRÄGER - INVESTITIONSVOLUMEN

- Investitionen 2000–2013 weltweit
- 57 % für Erneuerbare
- 40 % für fossile Energien (Kraftwerke)
- 3 % für Kernkraftwerke
- Deutschland 2014 in Mrd. €
- 3,1 Solar
- 2,4 Bioenergie
- 1,0 Geothermie
- Ca. 3,8 Fossile Anlagen

Deutschland

DIE ENERGIE-UMWANDLUNG DER PRIMÄR- ENERGIETRÄGER - FÖRDERUNG

Kohle, Erdgas, Erdöl, Biomasse

- Brennstoff- Förderung (Gewinnung)
- Stein-Kohle: Meist Bergwerk (unter Tage)
- Braun-Kohle: Grube (über Tage)
- Erdgas/Erdöl: Bohrung, Förderung durch Eigendruck oder mittels Druckaufbau (Verdrängung)
- Biomasse: Ernte, Sammlung

DIE ENERGIE-UMWANDLUNG DER PRIMÄR- ENERGIETRÄGER - AUFBEREITUNG

Kohle, Erdgas, Erdöl, Biomasse

- Brennstoff- Aufbereitung
- Stein-Kohle: Zerkleinern, Waschen, Sortieren
- Braun-Kohle: Zerkleinern, Sortieren
- Erdgas: Reinigen, Mischen
- Erdöl: Raffinieren (Trennen, Selektieren)
- Biomasse: Zerkleinern, Sortieren

DIE ENERGIE-UMWANDLUNG DER PRIMÄR- ENERGIETRÄGER - TRANSPORT

Kohle, Erdgas, Erdöl, Biomasse

- Brennstoff-Transport
- Stein-und Braun-Kohle:
 Förderbänder, Zug, Schiff, LKW
- Erdgas: Pipeline (Rohrleitung), teilw. Schiff
- Erdöl: Pipeline, Zug, Schiff, LKW
- Biomasse: LKW, Zug

DIE ENERGIE-UMWANDLUNG DER PRIMÄR- ENERGIETRÄGER - LAGERUNG

Kohle, Erdgas, Erdöl, Biomasse

- Brennstoff- Lagerung am Verwendungsort (Kraftwerk, Heizwerk)
- Stein-Braun-Kohle, Biomasse: offene Lagerflächen, Silo, Bunker (= Vorlagebehälter mit Austragseinheit Förderbänder, Schnecke, ...)
- Erdgas: (Druck-) Tank
- Erdöl: (atmosph.) Tank

DIE ENERGIE-UMWANDLUNG DER PRIMÄR- ENERGIETRÄGER - UMWANDLUNG

Kohle, Erdgas, Erdöl, Biomasse

- Brennstoff- Umwandlung im Kraftwerk, Heizwerk
- Stein-Braun-Kohle, Biomasse, Erdgas, Erdöl
- Thermische Umwandlung = Verbrennung

DIE VERBRENNUNG

- Bei der Verbrennung reagiert ein <u>Brennstoff</u>
- überwiegend die <u>Kohlen-Wasser-stoffe</u>
- mit Sauerstoff der Luft
- unter Freisetzung von <u>Wärme</u>
- Der Brennstoff wird oxidiert, d. h. er geht chemische Verbindungen mit Sauerstoff ein.
- Die entstehende Wärme ist die eigentliche Nutzenergie
- Die entstehenden
- Verbrennungs-Produkte wie <u>Kohlendioxid</u> (CO₂), <u>Kohlenmonoxid</u> (CO), <u>Wasserdampf</u> (H₂O)
- Feststoffe (Asche) werden, zusammen mit den
- entstehenden ("Schadstoffen") <u>Schwefeldioxid</u> (SO₂), <u>Stickstoffoxiden</u> (Nox)₃).
- An die Umwelt abgegeben (Schornstein, Deponie).

DER HEIZWERT

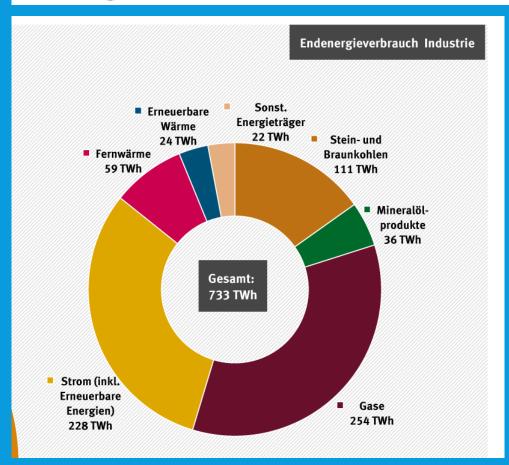
- Der **Heizwert** Hu
- ist die bei einer Verbrennung maximal nutzbare Wärmemenge (KJ),
- bei der es nicht zu einer <u>Kondensation</u> des im <u>Abgas</u> enthaltenen <u>Wasserdampfes</u> kommt
- bezogen auf die Menge des eingesetzten <u>Brennstoffs</u> (Kg, m³)
- Hu in kJ/kg oder kJ/m³
- = nutzbare <u>Wärmemenge</u> Q in KJ pro <u>Brennstoffmenge</u>m in kg oder m³
- Der Heizwert ist das Maß für die spezifisch (je Bemessungseinheit) nutzbare Wärmemenge ohne Kondensationswärme.

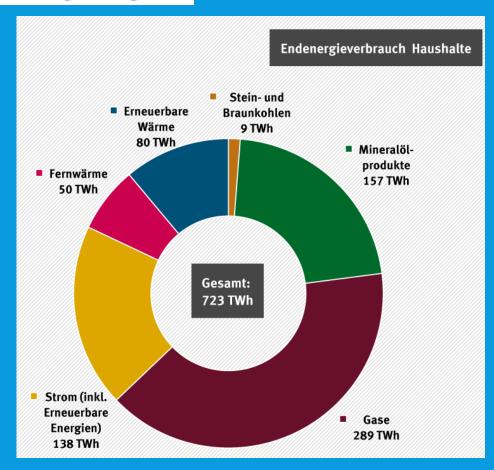
DIE ENERGIE-UMWANDLUNG DER PRIMÄR- ENERGIETRÄGER - ÜBERTRAGUNG

Kohle, Erdgas, Erdöl, Biomasse

Sonne, Erdwärme

Wärme-Übertragung an Wärmeträger


Wärme-Übertragung an Wärmeträger


 Die durch Verbrennung erzeugte Wärme wird an das Wärmeträger-Medium (Wasser) übertragen.

- Die Wärme
- Sonne = Strahlung
- Erdwärme = Konvektion
- wird an das Wärmeträger-Medium (Wasser) übertragen

VERWENDUNG DER PRIMÄR-ENERGIETRÄGER

Endenergieverbrauch 2013* nach Sektoren und Energieträgern

Quelle: Arbeitsgemeinschaft Energiebilanzen: Auswertungstabellen zur Energiebilanz 1990 bis 2013, Stand 09/2014

PRIMÄR- ENERGIETRÄGER - WIR FASSEN ZUSAMMEN

Arten der Primär- Energieträger zur Thermischen Energienutzung

- fossile Energieträger
- Erdgas, Kohle, Erdöl
- Sind heute (noch) die Haupt-Energieträger der Wärmeversorgung

- erneuerbaren Energiequellen
- Sonne, Erdwärme, Biomasse
- Sind die Haupt-Energieträger der Zukunft

PRIMÄR- ENERGIETRÄGER - WIR FASSEN ZUSAMMEN

Arten der Primär- Energieträger

- Unterscheiden sich durch
- Ihre Entstehung
- Umfang Ihrer Nutzung
- Art der Förderung
- Der Aufbereitung
- Der Lagerung
- Des Transportes
- Der Umwandlung

- Haben eins gemeinsam
- Nutzung eines Teils ihres Energieinhaltes in Form von Wärme
- Zur Übertragung an einen Wärmeträger

THERMISCHE ENERGIEVERSORGUNGSANLAGEN - WELCHE ART VON ANLAGEN GIBT ES?

- Zentrale Anlagen
- Wärmeerzeugung zur Deckung des Heizwärmebedarfs von mehreren Gebäuden/Anlagen
- Fernheizwerk
- -ausschließlich Wärmeerzeugung
- Fernheiz-Kraft-werk
- kombinierte, parallele Erzeugung von Wärme und Strom
- <u>= Kraft-Wärme-Kopplung</u> (KWK)
- Blockheizkraftwerke

- Wärmeträger sind :
 - Warmwasser
 - Heißwasser
 - Dampf